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Wake Steering Wind Farm Control
With Preview Wind Direction Information

Eric Simley1, Paul Fleming1, Jennifer King1, and Michael Sinner1,2

Abstract— Wake steering is a wind farm control strategy in
which upstream turbines operate with a yaw misalignment to
deflect their wakes away from downstream turbines, yielding
a net power gain for the wind plant. But the inability of
wake-steering controllers to perfectly track the wind direction
leads to suboptimal performance. In this paper, we propose the
use of preview wind direction measurements upstream of the
turbine to improve controller performance by anticipating wind
direction changes. Further, data from an operational wind plant
are used to determine realistic preview measurement accuracy.
Using the FLOw Redirection and Induction in Steady State
(FLORIS) engineering wind farm control tool, we compare
the performance of standard and preview-enabled baseline
and wake-steering control for a two-turbine array during
below-rated operation. Assuming perfect preview information,
preview-based wake steering increases energy production by
the equivalent of 8.9% of the baseline wake losses, compared
to a wake loss recovery of 5.8% with standard wake steering.
However, when realistic measurement accuracy is included, the
preview-based controller provides no advantage over standard
control, motivating the need for more sophisticated control and
wind direction forecasting strategies.

I. INTRODUCTION

Wake steering is a wind farm control strategy in which
upstream turbines are misaligned with the wind direction,
causing their wakes to deflect away from downstream wind
turbines [1]. Although the misaligned wind turbines produce
less power, the additional power generated by downstream
turbines can yield a net power gain for the wind plant.
Traditionally, the benefits of wake steering have been demon-
strated assuming fixed wind directions (e.g., using high-
fidelity modeling [2] or steady-state engineering wake mod-
els [3]). In practice, however, wake-steering controllers must
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operate in dynamic wind environments in which the wind
conditions are estimated from imperfect measurements. A
recent field demonstration of wake steering has shown a net
increase in energy for specific wind directions [4], [5], but the
inability of the controller to perfectly track the time-varying
wind directions led to suboptimal performance. Specifically,
the slow dynamics of the wind turbine’s yaw controller, used
to indirectly implement the desired yaw offsets, caused the
offsets to lag behind the wind direction by up to several
minutes [4].

Several strategies for addressing the challenges of wake
steering in dynamic wind conditions have been investigated.
Noticing that baseline yaw controllers react too slowly to
yaw offset commands, Bossanyi [6] found that directly
yawing wind turbines based on regularly updated yaw off-
sets increases wake-steering performance. With indirect yaw
control, Kanev [7] observed that heavily filtering the wind di-
rections used to determine the yaw offset, updating the offset
command at least every 120 s, and including hysteresis on the
yaw offsets yielded satisfactory energy gains and low levels
of yaw activity. Several authors have investigated robust
wake-steering control, in which yaw offsets are optimized
assuming uncertainty in the wind directions the turbines
experience (e.g., [8], [9]). Lastly, Doekemeijer et al. [10]
and Howland et al. [11] proposed closed-loop wake-steering
controllers that estimate plant-level wind conditions and
wake model parameters in real time, demonstrating energy
gains for six-turbine arrays using high-fidelity simulations.

Inspired by lidar-assisted wind turbine control, in which
measurements of the approaching wind speeds are used
to improve rotor speed regulation and reduce structural
loads [12], we propose the use of preview wind direction in-
formation to improve wake steering. Preview measurements
of the approaching wind directions are used as control inputs
in place of measurements from the turbine’s nacelle wind
vane to help overcome controller delays [4], thus improving
yaw tracking. To assess the impact of wind direction preview,
we modify a wake-steering controller comprising a yaw
offset lookup table combined with a standard yaw controller
to accommodate wind direction measurements with varying
amounts of preview. Preview measurements of the approach-
ing wind direction could be obtained from several sources,
including remote-sensing devices (e.g., lidar), meteorological
masts, or one or more upstream wind turbines. For this study,
we simply assume the wind direction is measured at a single
point upstream of the turbine at hub height.

Preview wake steering is evaluated using the FLOw
Redirection and Induction in Steady State (FLORIS) engi-
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neering wind farm control tool [13] with stochastic wind
direction inputs. Realistic preview measurement accuracy—
limited by the evolving state of the atmosphere as the flow
advects downstream—is included using a coherence model
based on the measured correlation between wind directions
along a row of wind turbines in a commercial wind plant.
The coherence model is then used to introduce a preview
distance-dependent correlation loss between the upstream
measurements and the wind directions at the controlled
turbine. For a two-turbine array, we evaluate the potential
for preview wake steering, as well as preview baseline yaw
control, assuming 1) perfect preview information, and 2)
realistic preview measurement accuracy using the developed
coherence model, but assuming no sensor error.

The remainder of the paper is organized as follows. In
Section II, we describe the standard and preview-enabled
wake-steering controllers evaluated here along with the base-
line yaw controller used for comparison. The stochastic
wind direction model is discussed in Section III. Section IV
describes the FLORIS-based wake-steering simulation envi-
ronment. Next, simulation results are provided in Section V.
Finally, Section VI concludes the paper with recommenda-
tions for further research.

II. PREVIEW-BASED WAKE-STEERING
CONTROLLER DESIGN

The wake-steering controller investigated here is based on
a control architecture used in a recent field experiment [4],
[5]. It comprises two stages: 1) a lookup-table-based wake-
steering controller that outputs a yaw offset based on mea-
sured wind speed and direction, and 2) a baseline yaw
controller that implements the desired yaw offset. In this
section, we describe the baseline yaw controller as well as
the standard and preview-enabled wake-steering controllers.
To evaluate wake-steering control in this paper we consider
a simple two-turbine array with a controlled turbine 5 rotor
diameters (5D) due west of a waked turbine. The wind
turbine parameters are based on the National Renewable
Energy Laboratory (NREL) 5-MW reference wind turbine
model [14] with D = 126 m and a rated wind speed
of 11.4 m/s. Fig. 1a illustrates the upstream wind turbine
operating with a +25◦ yaw misalignment, thereby redirecting
its wake away from the downstream turbine.

A. Baseline yaw controller

The baseline yaw controller used by Simley et al. [9],
based on the control strategy described by Bossanyi [6], is
implemented here. The absolute wind direction measured
by the turbine is filtered using a first-order filter with a
time constant of 35 s (see Fig. 1b for definitions of wind
direction φ, yaw position θ, and yaw offset/misalignment γ).
When the magnitude of the difference between the low-pass-
filtered wind direction and the turbine’s yaw position exceeds
a deadband threshold of 8◦, the turbine begins yawing toward
the wind direction at the rate of 0.3◦/s assumed for the NREL
5-MW reference wind turbine [14]. Once the difference

(a) Preview wake-steering scenario

(b) Yaw control variables

Fig. 1: Wake-steering variables. (a) Wake steering scenario based on
FLORIS showing preview distance and heading relative to north, wind
direction, and preview wind direction. (b) Yaw position and yaw offset.

between the filtered wind direction and the yaw position
reaches zero or changes sign, the turbine stops yawing.

B. Standard wake-steering controller

The standard wake-steering controller architecture inves-
tigated here was developed assuming yaw offsets must be
applied indirectly using the wind turbine’s existing yaw con-
troller [4]. As shown in Fig. 2a, the wind direction (formed
by summing the yaw position and the yaw misalignment
measured by the wind vane) and the low-pass-filtered wind
speed are used as inputs to a yaw offset lookup table. The
selected yaw offset is then subtracted from the original wind
vane signal. This modified vane signal is input to the yaw
controller in place of the original vane measurement, thereby
inducing the desired yaw offset. Note that Simley et al. [9]
used a low-pass-filtered wind direction signal as the input to
the lookup table; however, we found that energy production
was maximized using the unfiltered wind direction for the
wind conditions simulated here. In this work, we simplify
the controller by assuming a constant wind speed of 8 m/s.

C. Robust yaw offsets

To determine the yaw offset schedule used in the lookup
table shown in Fig. 2a, the optimal yaw offsets that maximize
overall wind plant power are found using the FLORIS engi-
neering wind farm control tool [13] for a sequence of wind
directions in 1◦ steps. Following the reasoning explained
by Fleming et al. [4], yaw offsets are constrained to be
positive (a counterclockwise rotation of the nacelle relative to
the wind direction [see Fig. 1b]). This constraint eliminates
complexity associated with switching between large positive
and negative offsets. Furthermore, positive yaw offsets have
been shown to be more effective at redirecting wakes than
negative yaw offsets [15], [16].

To address variability in the wind directions the controlled
turbine will experience while operating at a given yaw
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(a) Standard wake-steering controller

(b) Preview-based wake-steering controller

Fig. 2: Controller structure for (a) standard and (b) preview-based wake-
steering controllers. The modified output vane signal is used as the input to
the wind turbine’s yaw controller.

Fig. 3: Robust yaw offset schedules for a controlled wind turbine 5D west
of a downstream turbine for a wind speed of 8 m/s. Optimal yaw offsets
for different values of baseline yaw error standard deviation are compared
to the static optimal offset schedule (without wind direction uncertainty).
Wind turbine parameters are based on the NREL 5-MW reference turbine.

position, θ, we use robust yaw offset schedules. These are
given by the yaw offsets that maximize the expected wind
plant power production for a distribution of wind directions
centered on the intended direction [8]–[9]. Based on the
method presented by Simley et al. [9], a normal distribution
of possible wind directions is used here. Assuming the yaw
error contains contributions from wind direction variability
as well as uncertainty in the yaw position achieved by
the controller, the standard deviation of the wind direction
variations, σφ, is given by

σφ =
√
σ2
γ − σ2

θ , (1)

where σγ is the yaw error standard deviation and σθ is the
standard deviation of the yaw position uncertainty, approxi-
mated as 1.75◦ [9]. Examples of robust yaw offset schedules
for a range of yaw error standard deviations are shown in
Fig. 3.

D. Preview-based wake-steering controller

As shown in Fig. 2b, we made modifications to the stan-
dard wake-steering controller to allow preview wind direction

measurements to be used in place of the turbine’s nacelle
wind vane. The upstream wind direction measurement is
delayed by τdelay s before it is filtered using a first-order low-
pass filter and input to the yaw offset lookup table. Addition-
ally, the wind vane signal used by the standard wake-steering
controller is replaced by the difference between the filtered
preview wind direction and the wind turbine’s yaw position.
Similar to lidar-assisted wind turbine control applications, the
preview wind direction measurement is filtered to remove
frequency components that are uncorrelated with the wind
directions that arrive at the turbine [17]. The choice of filter
time constant will be discussed in Section V.

The time delay, τdelay, is intended to achieve a target
preview time, τprev, and is given by

τdelay = max (τarrival − τprev, 0), (2)

where τarrival is the estimated time it takes for the measured
wind to arrive at the turbine. Multiple values of τprev—which
is used to overcome the delays caused by filtering as well
as the slow dynamics of the baseline yaw controller—will
be investigated when evaluating the controller in Section V.
Using the preview distance, dprev, and heading relative to
north, αprev, between the wind turbine and measurement
locations (See Fig. 1a), τarrival is estimated as

τarrival = dprev/ (cos (φprev,LPF − αprev)uprev,LPF) . (3)

The variables φprev,LPF and uprev,LPF represent the upstream
wind direction and wind speed measurements, respectively,
each filtered using a first-order low-pass filter with a time
constant of 60 s. This time constant is intended to ap-
proximate the slowly varying wind conditions governing
the advection of the flow; identifying the optimal filter
parameters requires further research.

III. WIND DIRECTION MODEL BASED ON FIELD
MEASUREMENTS

We use data from an operational wind power plant to help
simulate wake-steering control with realistic time-varying
wind directions. Specifically, we analyze supervisory control
and data acquisition data from the Lillgrund offshore wind
plant, sampled at a resolution of 1 s, to determine 1) the
power spectral density (PSD) of wind direction variations,
and 2) the evolution of wind direction variations as the
wind travels downstream. The Lillgrund wind plant—located
between Denmark and Sweden—comprises 48 2.3-MW wind
turbines, with a hub height of 65 m and D = 93 m, arranged
in a regular grid with turbines spaced 400 m and 305 m apart
in the two principle directions (see Fig. 4) [18].

Realistic wind direction evolution as the flow advects
downstream is assessed by comparing the wind directions
measured at three turbines separated by 400 m in the princi-
ple direction of 222◦, as shown in Fig. 4. To reflect interest
in wake steering during below-rated operation, the data are
analyzed in 1-hour periods with mean wind speeds between
7 and 9 m/s. Furthermore, data are filtered to include only
mean wind directions between 217◦ and 227◦, when the flow
is roughly aligned with the row of turbines. The resulting
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Fig. 4: Lillgrund wind farm layout showing the three turbines used to esti-
mate the wind direction power spectral density and longitudinal coherence.

data set comprises 59 1-hour periods between May 2016 and
March 2017. An example 1-hour period of measured wind
directions is provided in Fig. 5a, where the propagation delay
between the three turbine locations is shown.

Rather than directly using the observed wind direction
time series for wake-steering simulations, a statistical wind
direction model is used to generate realistic stochastic wind
direction time series, as will be explained in Section IV.
Therefore, an arbitrary number of simulations can be per-
formed. The wind directions along the row of three turbines
are characterized by the PSD of the free-stream wind direc-
tion variations at wind turbine F6 as well as the longitudinal
coherence between the wind directions measured at F6 and
both F5 and F4. The PSD of the wind direction, φ, at F6 is
plotted in Fig. 5b along with a simple model fit given by

Sφφ (f) =
2.2 · 103σ2

φ(
1 + f

9·10−4

)3 , (4)

where σφ indicates the 1-hour wind direction standard de-
viation. Based on all 59 hours of data, σφ ≈ 8◦. The
upstream turbine F6 is used to estimate the wind direction
PSD because the wind directions at F5 and F4 exhibit signs
of high-frequency wake-added turbulence (see Fig. 5a).

The correlation between preview measurements of the
wind direction, φprev, obtained at F6 and the actual wind
directions, φ, that arrive at F5 and F4 is characterized using
the longitudinal magnitude squared coherence function

γ2φφprev,long (f) =

∣∣Sφφprev (f)
∣∣2

Sφφ (f)Sφprevφprev (f)
, (5)

describing the correlation (from 0 to 1) between the sig-
nals as a function of frequency. The function Sφφprev (f)
is the cross-spectral power density between the upstream
and downstream wind directions, whereas Sφφ (f) and
Sφprevφprev (f) are the PSDs of the downstream and preview
wind directions, respectively. Note that φprev is time shifted
by the estimated arrival time given by Eq. 3 before the

Fig. 5: Characterization of 1-hour wind directions at turbines F6, F5, and
F4 for 1-hour mean wind speeds from 7-9 m/s and mean wind directions
from 217-227◦. (a) Example time series. (b) Power spectral density of
wind direction at turbine F6 and model fit given by Eq. 4. (c) Longitudinal
coherence between wind direction at turbine F6, time-shifted using Eq. 3,
and wind directions at turbines F5 and F4, together with model fit (Eq. 6).

coherence is calculated. Figure 5c contains the measured lon-
gitudinal coherence between the time-shifted wind directions
at F6 and the wind directions that arrive at F5 and F4, 400 m
and 800 m downstream, respectively. To model coherence
for arbitrary preview distances, dprev, an exponential decay
coherence function is fit to the measured coherence curves
in Fig. 5c, given by

γ2φφprev,long (f) = exp

(
−7

8
dprevf

)
. (6)

IV. SIMULATION ENVIRONMENT

In this section, we briefly describe the FLORIS model
used to simulate wake steering, the stochastic wind direction
inputs, and the overall simulation strategy.
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A. FLORIS model

Wake steering is simulated using FLORIS for the array
of two NREL 5-MW reference wind turbines separated by
5D in the east-west direction shown in Fig. 1a. We use
the default Gauss-Curl Hybrid wake velocity and deflection
model within FLORIS [19], with an ambient turbulence
intensity value of 8%—found to closely match results from
a wake-steering field experiment [5]—at a fixed below-rated
mean wind speed of 8 m/s. The impact of yaw misalignment,
γ, on power production is modeled by scaling the power
by (cos γ)

1.9, where the exponent of 1.9 was estimated by
Gebraad et al. [2] based on high-fidelity modeling.

B. Stochastic wind directions

Following the Veers method for generating stochastic wind
fields using frequency domain techniques [20], we treat the
time-delayed preview wind direction measurement, φprev, and
downstream wind direction, φ, as jointly Gaussian random
processes. Using the coherence model in Eq. 6 to describe
the correlation between the two wind directions and the
PSD given by Eq. 4 to define their power spectra, multiple
stochastic realizations of the wind direction time series can
be generated for a given preview distance. Although the
FLORIS model assumes a constant wind speed of 8 m/s, the
error associated with estimating the arrival time, τarrival, of
the measured wind in real time is inherent in the longitudinal
coherence model, as explained in Section III.

Although the standard yaw and wake-steering controllers
act on the full wind direction measurements, φ, a low-pass-
filtered version of the original wind direction signal, φ`,
is used as the input to FLORIS. Because the steady-state
FLORIS wake model inherently captures some of the high-
frequency wind direction variations via ambient turbulence,
the wind direction input should ideally reflect the slowly
varying large-scale mean wind direction across the wind
power plant. Although it is difficult to determine which
frequencies should be attributed to ambient turbulence and
which represent large-scale variations, we approximate the
separation by filtering the original wind direction signal using
a first-order filter with a cutoff frequency of 0.0011 Hz.
This particular frequency is estimated by comparing the
power spectra of wind directions from a stationary large-
eddy simulation used to tune FLORIS and wind directions
measured in the field, as discussed by Simley et al. [9].

C. Simulation overview

The impact of preview wind direction information is as-
sessed for a range of preview distances. For each preview dis-
tance, two preview measurement scenarios are investigated:
1) an ideal scenario with perfect preview information, where
the preview measurement is simply a time-shifted copy of
the downstream wind direction signal, and 2) a realistic
scenario relying on the longitudinal coherence model. Within
both preview scenarios, four types of controllers are simu-
lated: 1) standard baseline yaw control, 2) preview-enabled
baseline yaw control, 3) standard wake-steering control, and
4) preview-enabled wake steering. Note that the realistic

preview scenario is intended to capture measurement error
caused by the evolution of the atmosphere as the flow advects
downstream. In practice, additional error sources could exist
(e.g., sensor error and complex terrain effects).

For each preview measurement scenario, 3240 stochastic
1-hour realizations of the wind direction time series are
generated using a 1-s sample period, with mean wind di-
rections evenly distributed between 230◦ and 310◦ (thereby
encompassing the entire waked sector). For each time series,
the baseline yaw controller is simulated with and without
preview. The resulting yaw error standard deviations, σγ , are
used to determine the robust yaw offset schedules for the
wake-steering controllers. Next, standard and preview-based
wake-steering control is simulated. For all simulations, the
yaw position of the downstream turbine is determined using
either standard or preview-enabled baseline yaw control.
Results from the first 15 minutes of each 1-hour simulation
are discarded to remove controller startup transients. Lastly,
the resulting low-frequency wind direction and yaw position
combinations are used to determine the expected energy
production using FLORIS. Because FLORIS models time-
averaged flow, we treat the downstream wind turbine’s power
at a particular time step as the expected power after the wake
from the upstream turbine has propagated downstream.

Examples of the stochastic wind direction signals and
simulated yaw positions for the upstream wind turbine with
baseline and wake-steering control are provided in Fig. 6 for
standard and preview-enabled control, with both ideal and
realistic preview measurements.

V. PREVIEW-BASED WAKE-STEERING
SIMULATION RESULTS

Simulation results for baseline and wake-steering control
are presented here for standard and preview-based control
strategies using preview distances, dprev, from 80 to 1120 m,
corresponding to preview times, τprev, from 10 to 140 s for
the mean wind speed of 8 m/s. Results are provided for
both ideal and realistic preview measurements. For the ideal
preview scenario, we filter the preview wind direction mea-
surement using a time constant of 30 s (see Fig. 2b), which
maximizes energy production with wake steering. However,
for the realistic preview scenario, we use unfiltered preview
measurements; the time delay introduced by filtering leads
to less effective yaw tracking and lower energy production.

A. Preview-based yaw control performance

First, the control improvement using preview wind direc-
tion information is assessed for baseline yaw control (equiv-
alent to using the preview-based wake-steering controller in
Fig. 2b without yaw offsets). Figure 7a compares the yaw
error standard deviation, σγ , for standard yaw control as well
as ideal and realistic preview control as a function of preview
time and distance. The yaw error, γ, is defined with respect
to the low-frequency wind direction, φ`, which is used as
the input to FLORIS. As shown in Fig. 7a, ideal preview-
based yaw control reduces the yaw error standard deviation
relative to the baseline value of σγ = 4.2◦, achieving a
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Fig. 6: Example simulation time series comparing standard and preview-
based control for the upstream wind turbine for the (a) baseline and (b)
wake-steering controllers with ideal preview measurements as well as the
(c) baseline and (d) wake-steering controllers with realistic preview. The
simulations use a preview time of τprev = 80 s (a preview distance of
dprev = 640 m for the mean wind speed of 8 m/s). Each plot shows the
low-frequency wind direction, φ`, standard wind direction measurement, φ,
preview wind direction measurement, φprev, as well as yaw positions, θ,
with standard and preview control. For plots (b) and (d), the target yaw
positions for wake steering are shown.

minimum standard deviation of 3.0◦, with 120 s of preview.
With additional preview time, the controller tends to yaw too
early, tracking the upcoming wind directions less effectively.
Note that ideal preview-based control performs worse than
standard yaw control for preview times less than 30 s because
of the time delay introduced by the measurement filter.
With realistic preview measurements, there appears to be no
benefit to using preview information. The amount of yaw
error continues to grow as the preview time increases.

Although not presented here, reducing yaw error through
the use of preview information improves energy capture with
baseline yaw control in addition to wake steering.

B. Preview-based wake steering performance

Wake-steering performance is expressed in terms of the
percentage of wake losses incurred with baseline yaw control
that are recovered by wake steering, similar to analysis by
Fleming et al. [5]. Wake losses are determined by comparing
the total energy production of the wind turbines to the total
energy that would have been produced if both turbines were

(a) Yaw error standard deviation with baseline yaw control

(b) Wake loss recovery from wake steering

Fig. 7: Control performance for standard control, ideal preview control, and
realistic preview control for different preview times and distances. (a) Yaw
error standard deviation for baseline yaw control. (b) Percentage of total
wake losses recovered from wake steering.

unwaked and operating with baseline yaw control. Therefore,
the wake loss recovery from wake steering is calculated as

∆Lwake = 1 −
∑N
i=1 (2Pup,base,i − Ptotal,control,i)∑N
i=1 (2Pup,base,i − Ptotal,base,i)

, (7)

where Pup,base,i and Ptotal,base,i represent the power produced
by the upstream turbine and the total power produced by
the array, respectively, with baseline yaw control for the i-th
1-hour simulation. Similarly, Ptotal,control,i indicates the total
power produced by the array with wake steering.

The wake loss recovery from wake steering is presented
in Fig. 7b for standard as well as ideal and realistic preview-
based wake steering as a function of preview time and
distance. The energy gained by the standard wake-steering
controller is equivalent to 5.8% of the baseline wake losses.
With ideal measurements, the preview-based wake-steering
controller recovers a maximum of 8.9% of the baseline wake
losses with 90 s of preview, representing a 55% increase in
energy gain compared to standard wake steering. As can be
expected from the yaw errors in Fig. 7a, preview-based wake
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steering with realistic preview measurements performs worse
than standard wake steering. Further, the wake loss recovery
decreases as the preview distance increases, indicating that
the marginal benefit of extra preview time is outweighed by
the lower measurement coherence.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we modified a simple wake-steering con-
troller to allow the use of preview wind direction informa-
tion, with the goal of improving yaw tracking in dynamic
wind conditions. Using data from an offshore wind power
plant, we developed a method for generating realistic wind
direction measurements to evaluate preview-based wake
steering. We performed simulations for a two-turbine array
using the FLORIS model to determine power production for
different control scenarios. With perfect preview information,
preview-based wake steering was found to increase energy
production significantly more than standard wake steering,
with a preview time of 90 s providing the most benefit.

We expect the optimal preview time to depend on the
yaw controller dynamics and wind conditions. For controllers
that yaw less frequently, longer preview times will likely be
needed to overcome controller lag. But for more responsive
controllers, or when operating in highly variable wind con-
ditions, shorter preview times should help ensure the yaw
position does not lead the wind direction too much.

With realistic preview measurement accuracy, on the other
hand, no improvement in wake-steering performance was
observed. However, the wind direction coherence model we
used to determine preview measurement accuracy represents
the average coherence for a variety of atmospheric condi-
tions. More research is needed to determine how longitudinal
wind direction coherence depends on atmospheric conditions
as well as terrain. Particular sites or wind conditions may be
more favorable for preview-based wake steering.

To fully evaluate the benefits of preview-enabled wake
steering with realistic measurement accuracy, more sophis-
ticated control strategies should be explored. For example,
rather than waiting for the wind turbine’s existing yaw con-
troller to implement wake steering, additional performance
gains could be made by yawing the turbine more frequently,
(e.g., at fixed time intervals [6], [10]). Further, model predic-
tive control approaches could be used to explicitly optimize
the control actions based on the wind direction preview.

In addition to yaw controller improvements, more effective
methods for estimating the approaching wind directions
should be investigated. For instance, Annoni et al. [21]
present a consensus approach for estimating local wind direc-
tions through information exchange between wind turbines
that could improve forecasting accuracy. Moreover, remote-
sensing devices, such as scanning lidars, could be used to
measure the approaching wind conditions over a large area.
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